Power efficient organization of wireless sensor networks
نویسندگان
چکیده
recently as an effective way of monitoring remote or inhospitable physical environments. One of the major challenges in devising such networks lies in the constrained energy and computational resources available to sensor nodes. These constraints must be taken into account at all levels of system hierarchy. The deployment of sensor nodes is the first step in establishing a sensor network. Since sensor networks contain a large number of sensor nodes, the nodes must be deployed in clusters, where the location of each particular node cannot be fully guaranteed a priori. Therefore, the number of nodes that must be deployed in order to completely cover the whole monitored area is often higher than if a deterministic procedure were used. In networks with stochastically placed nodes, activating only the necessary number of sensor nodes at any particular moment can save energy. We introduce a heuristic that selects mutually exclusive sets of sensor nodes, where the members of each of those sets together completely cover the monitored area. The intervals of activity are the same for all sets, and only one of the sets is active at any time. The experimental results demonstrate that by using only a subset of sensor nodes at each moment, we achieve a significant energy savings while fully preserving coverage. I. INTRODUCTION Sensor networks are wireless networks comprised of a large number of miniscule devices equipped with one or more sensors, some processing circuits, and a wireless transceiver. Such devices are called sensor nodes. The dimensions of a sensor node are small enough to allow easy deployment of a large number of nodes into remote and inhospitable areas. Once deployed, sensor nodes organize a network, so that they can combine their partial observations of the environment. By combining those partial observations, a network offers to a user a global view of a monitored area. The source of energy for a node is most often an attached battery cell. Since the size of a cell is limited, the amount of available energy is also limited. Therefore, sensor network architectures and applications, as well as deployment strategies, must be developed with low energy consumption as one of the important requirements. We study the problem of the placement of sensor nodes into a monitored area and their organization so that the full coverage is achieved with minimal energy consumption. Specifically, we have developed a heuristic that organizes the available sensor nodes …
منابع مشابه
Mathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks
In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...
متن کاملAn Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks
Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...
متن کاملHierarchal Grouping Strategy with Adaptive Power Tuning in ZigBee Wireless Sensor Networks
Designing wireless sensor networks should meet appropriate parameters such as quality of service (QoS) defined by different users. The variable physical conditions of the environment, processing and transmission power limitations and limited communication capabilities are the most important obstacles that influence QoS parameters such as throughput, delay, reliability and network lifetime. The ...
متن کاملMLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks
Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....
متن کاملCongestion Control Approaches Applied to Wireless Sensor Networks: A Survey
Wireless Sensor Networks (WSNs) are a specific category of wireless ad-hoc networks where their performance is highly affected by application, life time, storage capacity, processing power, topology changes, the communication medium and bandwidth. These limitations necessitate an effective data transport control in WSNs considering quality of service, energy efficiency, and congestion control. ...
متن کاملAn Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems
An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001